Weak Log-majorization of Unital Trace-preserving Completely Positive Maps
نویسندگان
چکیده
منابع مشابه
0 An Analysis of Completely - Positive Trace - Preserving Maps
We give a useful new characterization of the set of all completely positive, trace-preserving maps Φ : M2 → M2 from which one can easily check any trace-preserving map for complete positivity. We also determine explicitly all extreme points of this set, and give a useful parameterization after reduction to a certain canonical form. This allows a detailed examination of an important class of non...
متن کاملLinear maps preserving or strongly preserving majorization on matrices
For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...
متن کامل0 A Characterization of Completely - Positive Trace - Preserving Maps on M 2
We give a useful new characterization of the set of all completely positive, trace-preserving maps Φ : M2 → M2. This allows us to determine explicitly all extreme points of this set, and to easily check any tracepreserving map for complete positivity. We also find an interesting class of extreme channels which appear to be new.
متن کاملN ov 2 00 1 An Analysis of Completely - Positive Trace - Preserving Maps
We give a useful new characterization of the set of all completely positive, trace-preserving maps Φ : M2 → M2 from which one can easily check any trace-preserving map for complete positivity. We also determine explicitly all extreme points of this set, and give a useful parameterization after reduction to a certain canonical form. This allows a detailed examination of an important class of non...
متن کاملlinear maps preserving or strongly preserving majorization on matrices
for $a,bin m_{nm},$ we say that $a$ is left matrix majorized (resp. left matrix submajorized) by $b$ and write $aprec_{ell}b$ (resp. $aprec_{ell s}b$), if $a=rb$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $r.$ moreover, we define the relation $sim_{ell s} $ on $m_{nm}$ as follows: $asim_{ell s} b$ if $aprec_{ell s} bprec_{ell s} a.$ this paper characterizes all linear p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Linear Algebra
سال: 2019
ISSN: 1081-3810
DOI: 10.13001/ela.2019.5177